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The electronic absorption line shape of a model chromophore at liquid interfaces is numerically evaluated
using electrostatic continuum theory. The interface is described as a sharp boundary separating two bulk
media, each characterized by different optical and static dielectric constant. The chromophore is modeled as
a pair of spherical cavities in which two equal and opposite point charges are embedded, but more complicated
charge distributions are possible. All possible orientations of the two cavities relative to the interface are
properly weighted, including the cases where each cavity may be located in both phases. Comparisons are
made with experiments, approximate analytical results, and molecular dynamics simulations.

I. Introduction

Solvent effects on electronic spectra have been extensively
studied in order to understand the nature of the condensed phase
environment and its effect on the structure and dynamics of
solute molecules.1 The shift in the position of the peak spectrum
taken in a given solvent relative to the spectrum in the gas phase
provides information about the polarity of the solvent and about
specific solute/solvent interactions. The shift of the spectra of
selected chromophores relative to the spectrum in a bulk
reference solvent has been used to construct very useful
empirical solvent polarity scales.2 Various theoretical ap-
proaches have been used to understand the effect of bulk liquids
on electronic spectra.3-7 Continuum electrostatic models have
been used to derive expressions for the position of the peak
spectra.8,9 These expressions are useful for extracting solute
properties10-12 (such as excited state dipole moments) from the
wealth of available experimental data.

In recent years, due to advances in experimental techniques
such as non-linear optical spectroscopies, measurements of
electronic spectra in complex environments such as that of liquid
interfaces have been reported. For example, the polarity of the
micelle-water interface has been probed by Saroja and Samanta
using a solvent-sensitive fluorescence probe.13 Girault and
coworkers have measured the electronic spectrum of phenol
and phenol derivatives at the air/water interface,14 and Eisenthal
and co-workers have used second harmonic generation spec-
troscopy to determine the spectrum ofN,N′-diethyl-p-nitroaniline
(DEPNA) at the air/water interface15 and at the water/1,2-
dichloroethane (DCE) interface.16

One of the major goals of these and similar studies is to use
the extensive knowledge about the relationship between solvent
effects on electronic spectra and solute/solvent interactions2,17

developed from studies in bulk liquid to gain an understanding
of the nature of the microscopic environment at liquid interfaces.
As has been the case in studies of bulk liquids, an important
component of the study of electronic spectroscopy at interfaces
is to derive simple expressions for the effect of the inhomoge-
neous environment on the spectra. For example, increasing the
polarity of the solvent environment will lower the transition
energy from the ground state to the excited state if the latter
has a larger electric dipole moment. Thus, it would be useful

to relate the shift in the peak spectrum at the interface relative
to the spectrum in bulk liquids to the dielectric property of the
liquids and the position and orientation of the solute molecule.

Besides the practical use of continuum electrostatic models
of electronic spectra at interfaces, these models can help provide
a simple theoretical interpretation of a large amount of
experimental data. For example, recent experimental measure-
ments of electronic spectra at several liquid/liquid interfaces
suggest that the peak spectrum at the interface is very close to
the average shift in the two bulk media.16 Could this surprising
result be explained using simple continuum models? Molecular
dynamics simulations of electronic spectra at liquid interfaces
recently reported by us18,19 show that the spectra are quite
sensitive to the location of the probe. Can this effect be
understood quantitatively by continuum models?

In this paper, a continuum electrostatic model for calculating
the spectral line shape at liquid interfaces and surfaces is
developed. Although continuum models of liquid interfaces
have been used in the past to compute ionic adsorption free
energy20 and reorganization free energy for electron transfer,21-24

they have not been utilized to compute electronic spectral line
shape. As in these models, the interface is described as a
mathematically ideal plane separating two bulk dielectric media.
However, unlike most applications to ET at interfaces, the model
described here allows for all possible solute locations at the
interface. The underlying theory and the specifics of the model
are discussed in section II. The model is applied to the spectrum
of DEPNA at the water liquid/vapor interface and at the water/
DCE interface in sections III.A and III.B. Although the resulting
model requires numerical techniques, a simple approximate
analytical expression is also developed in section IIIC. Sum-
mary and conclusions are given in section IV.

II. Theory

A. Statistical Mechanical Background. The system under
consideration consists of a single solute molecule (the chro-
mophore) in a bath of solvent molecules.V1(r ) denotes the
total adiabatic potential energy of the system when the chro-
mophore is in its ground electronic state, andV2(r ) denotes the
corresponding one for the excited state.r corresponds to the
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positions of all solvent and solute atoms. Included inV1(r ) and
V2(r ) is the fixed gas phase energy difference between the
solute’s electronic states. In the Frank-Condon approximation,
the electronic absorption spectrum results from “vertical”
transitions between the ground state and the excited state of
the solute. Assuming that the transition dipole moment is
independent of solute and solvent positions, the absorption line
shape in the inhomogeneous limit (infinite excited state lifetime)
is given by the ensemble average:

wherepΩ(r ) ) V2 - V1 is the energy difference between the
excited and ground states at a given atomic configuration,â )
1/kT, δ is the Dirac delta function, and the energy units are
such thatp ) 1. Replacing the delta function by its integral
representation (δ(x) ) ∫ -∞

∞ e-ixtdt) and performing a cumulant
expansion, one finds that, to second order, the line shape is given
by a Gaussian,25,26

where

If the transition between the two electronic states is the result
of a charge transfer, one can use the formalism of electron
transfer reactions to quantify the energetics involved. To this
end, it is useful to define solvent free energy functions for the
two electronic states.27-29 TakingX(r ) ) V2(r ) - V1(r ) as the
“solvent coordinate”, the reversible work required to produce a
given solvent polarization (which corresponds to the valueX(r )
) x) for the system in theith electronic state is

relative to some standard state. The reorganization free energy
for the statei is defined as the free energy associated with
changing the solvent coordinate fromXi ) 〈X(r )〉i (which is the
equilibrium value ofX(r ) in the statei) to the equilibrium value
of X(r ) in the second state. Thus,

Note that the equilibrium valueXi is simply the peak of the
spectrumpωi in the Gaussian approximation. It is important
to stress thatλ is a free energy difference that involves one
nonequilibrium state. In contrast, the equilibrium free energy
difference between the two states is given by

After simple manipulations of the delta function in eq 4 and
using eqs 5 and 6, one finds that29

This simple relation, with its obvious geometric interpretation
given in Figure 1, gives the peak spectrum in terms of the
reorganization free energy and the reaction free energy for the
corresponding ET reaction. Although the relationship given in
eq 7 does not assume a Gaussian distribution of the random
variableX(r ), the identification ofX1 ) 〈X(r )〉1 with pωi was
based on the second-order expansion of eq 1 for the line shape.
If we adopt this approximation for eq 4, we find that

From eq 7 we find thatX1 + X2 ) λ1 + λ2, and combining this
relation with eq 8 gives

which expresses the width of the absorption spectrum in terms
of the reorganization free energy for the forward and backward
ET reactions. Linear response theory assumes thatλ1 ) λ2 )
λ, which simplifies eq 9 to give

This equation was first derived by Marcus using a different
approach.30

Calculating the reorganization free energy and the solvation
free energy from realistic Hamiltonians is a formidable statistical
mechanical task that has been attempted for bulk liquids only.31

Thus, other than using computer simulations, the other option
for computing the spectra at liquid interfaces is to use a
continuum electrostatic model.

B. Continuum Electrostatic Model for ∆A1f2 and λ.
Equations 7 and 10 express the peak position and width of the
spectrum in terms of the reorganization free energy and the
solvation free energy. These can be evaluated by the following
equations using continuum electrostatics:32

whereεm is the dielectric constant of the medium;m ) 0 or s,
standing for the optical and static dielectric constants; andEi

m

is the electric field induced in this medium by the charge
distribution of theith electronic state. The calculation of the
volume integrals in eqs 11 and 12 is straightforward in a
homogeneous medium. For interfacial systems, one must
specify a proper model for the solute and the dielectric constants.
A simple and widely used choice is to model the interface as
an ideal plane perpendicular to theZ-axis and located atZ ) 0
separating two bulk homogeneous media.εI

m is the dielectric
constant for medium I (which occupies theZ < 0 region), and
εII

m is the dielectric constant for medium II. The solute is
described by two nonoverlapping spherical cavities of radiia
andb. The two cavities have point charges of magnitude(Q1

X1 ) ∆A1f2 + λ2 (7)

λi )
(X2 - X1)

2

2âσi
2

(8)

σi )
λ1 + λ2

x2âλi

(9)

σ1 ) σ2 ) x2λ
â

(10)

λ ) 1
8π

I[εo(E2
o - E1

o)2 - ε
s(E2

s - E1
s)2] dr (11)

∆A1f2 ) A2
eq - A1

eq

A1
eq ) 1

8π
I[εsEi

s‚Ei
s] dr (12)

I1f2(ω) ) 〈δ[ω - Ω(r )]〉1 )
∫δ[ω - Ω(r )]e-âV1 dr

∫e-âV1 dr
(1)

I1f2(ω) ) 1

x2πσ1
2
e-(ω-ω1)2/2σ1

2
(2)

ω1 ) 〈Ω(r )〉1

σ1
2 ) 〈[Ω(r ) - ω1]

2〉1 ≡ 〈[Ω(r )]2〉1 - ω1
2 (3)

Ai(x) ) -â-1 ln〈δ[X(r) - x]〉i (4)

λ1 ) A1(X2) - A1(X1)

λ2 ) A2(X1) - A2(X2) (5)

∆A1f2 ) -â-1 ln
∫e-âV2 dr

∫e-âV1 dr
) -â-1 ln〈e-â(V2 - V1)〉1 (6)
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in the ground electronic state and(Q2 in the excited state. The
two cavities may have a large number of distinct locations
relative to the interface plane, depending on the location of their
centers (both centers may be in one medium or each center may
be in a different medium) and whether or not the interface plane
goes through none, one, or both cavities. One possible location
is depicted in Figure 2.

Approximate analytical expressions for the reorganization free
energy and the solvation free energy for an ion pair at the liquid/
liquid interface was first calculated by Kharkats21 for the case
where the centers of the two cavities are located along the line
perpendicular to the interface. Marcus has extended these
calculations to the three-dimensional case,23 assuming that each
cavity is wholly restricted to one medium and can’t cross the
interface. Thus the orientation of the vector connecting the two
cavities is restricted to an angular cone whose size depends on
the size of the cavities and the distanceRbetween their centers.
Benjamin and Kharkats24 have calculated the reorganization free
energy for all possible locations in 3D by numerically evaluating
the integral in eq 11. These results, together with a similar
approach for calculating the solvation free energy in eq 12, are
used here to compute the electronic line shape.

The electric fields in eqs 11 and 12 are determined from the
potential φ(r ) generated by the charge distribution in each
electronic state usingE ) -∇φ. The potential due to a
particular charge distribution can be written as a sum of the
contributions from all point charges. The potential at any point
which is a distancer away from the point chargeq, which is
located in region I a distanceh from the interface, is given by33

wherer′ is the distance from the point of interest to the image
point of the charge. A similar expression in which “I” and “II”
are interchanged may be written if the charge is located in region
II. To use the potential of the charge distribution, one may
replace the volume integrals in eqs 11 and 12 by surface
integrals using the identity∫[(∇φ)‚(∇φ)]dV ) I(φ∇φ)‚dS, which
is correct in the region of zero charge33 (the region outside the
cavities). Specifically, consider the general volume integral

J ) (1/8π)I[εE‚E]dr . Each of the integrals in eqs 11 and 12
can be written as a sum of expressions likeJ for each elec-
tronic state and for the optical and the static response. The
equivalent surface integral can be written as a sum over the
surface of all the spherical cavities. Each cavity can be either
totally in medium I, or totally in medium II, or partially in
both media. IfSI

j is the part of thejth spherical cavity in
medium I andSII

j is the part of thejth spherical cavity in
medium II, then

whereφI
j is the electric potential on the portion of cavityj that

is in region I due to all the charges in region I and their images
in region II (as given by eq 13). Similarly,φII

j is the electric
potential on the portion of cavityj that is in region II due to all
the charges in region II and their images in region I.

Because of the form of the potential in eq 13, each surface
integral in eq 14 can be written as a sum of terms of the form:

whererR
2 ) σ2 + yR

2 + zR
2 - 2yRxσ2-z2sin æ - 2zRz, with a

similar expression forrâ
2. The surface integral is over a

spherical sectionS whose radius isσ ) a or b. The limits of
the integral overz, zmin andzmax, are determined by the distance
hσ of the center of the cavity from the interface. For example,
if the sphere’s center is in region I, the limits of the integral
over the part of the sphere that is in region I arezmin ) -min-
(hσ,σ), zmax ) σ, and the limits arezmin ) -σ, zmax ) -min-
(hσ,σ) over the other part. The integral in eq 15 is evaluated
numerically using a two-dimensional Gaussian quadrature.
Examples of the explicit expressions for the integrals that
contribute to the reorganization free energy and the solvation
free energy for the particular configuration of Figure 2 are given
in the appendix. A listing of all the cases, in the form of
computer code that evaluates the electronic line shape, can be
obtained from the author. web site:http://www.chemistry.
ucsc.edu/benjamin/research/codes.html.

C. The Spectral Line Shape. As will be demonstrated
below, for a chromophore model consisting of two spherical
cavities, the reorganization free energy and the solvation free
energy in eq 7 depend on the positionZ and the orientationθ
of the solute relative to the interface.Z is the distance between
the center of mass and the interface, andθ is the angle between
the solute dipole and the normal to the interface. Because we
are interested in the electronic line shape at a given distanceZ,
an ensemble average over the different orientations must be
performed. If

is the energy difference for a givenZ andθ, the linear response
approximation for the line shape at thisZ andθ is given by

To obtain the orientational average line shape, we use:

Figure 1. A schematic representation of the free energy associated
with electron transfer and optical electronic transitions.

Figure 2. A schematic representation of one possible orientation of
the chromophore (represented by a pair of spherical cavities with point
charges) at the interface between two dielectric media.
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whereA1(Z,θ) is the free energy of the ground state given in eq
12. This integral can also be evaluated numerically at each
value ofZ.

III. Results and Discussion

A. Absorption Line Shape at the Water Liquid/Vapor
Interface. A typical application of continuum electrostatics to
electronic spectra in bulk liquids involves estimating the excited
state dipole moment of a chromophore from a series of spectra
taken in different liquids. The cavity size is regarded as a free
parameter, although estimates of this quantity from molecular
size have also been attempted. Here one first finds the best
cavity size that reproduces the peak position of the experimental
absorption line shape of DEPNA in bulk water and then uses
this cavity size to study the spectrum at the interface. The values
of the ground and excited state dipole moments of this
chromophore are taken from a recent fit of molecular dynamics
simulations to the experimental spectra in bulk water.19

Using this approach, the following parameters were found
to give a reasonable fit of the peak position of the spectrum of
DEPNA in bulk water, and they are used in the calculations
reported below. The chromophore is represented by two spheres
of identical radiusa ) b ) 2.64 Å. The distance between the
centers of these two spheres isR ) 6 Å. The charges in the
ground and excited states areq1 ) 0.35e and q2 ) 0.70e,
respectively. For the calculations at the water liquid/vapor
interface, the dielectric constants of the two media used areεliq

o

) 1.78,εliq
s ) 78, εvap

o ) εvap
s ) 1, and the temperature isT )

298 K.
Figure 3 presents the results of the calculations with the above

parameters. In part A, the solvent contribution to the free energy
of the ground state is shown as a function of the position and
orientation of the pair of charges. The angleθ is measured
between the line connecting the two charges (which corresponds
to distanceR in Figure 2) and the normal to the interface (the
chromophore is parallel to the interface whenθ ) 90).
Obviously, there is no orientation dependence when the solute
center of mass is in the bulk water phase (Z , 0) or the gas
phase (Z . 0), but it is interesting to note that the bulk behavior
of water is already achieved atZ ) -6 Å. In contrast, there is
a strong orientation dependence near the interface. The solute
prefers to be parallel to the interface when it is on the water
side, and perpendicular to the interface when it is on the vapor
side. The strong orientation dependency will markedly influence
the weighting of the contribution of different orientations to
the absorption line shape (see below). The excited state
solvation free energy as a function ofZ and θ will have the
same exact shape as that of the ground state, but with a larger
energy scale because of the larger charge. Indeed, according
to eq 24 (in the appendix), for the present solute model:A2 )
Q2

2/Q1
2 A1.

Part B gives the reorganization free energy for the “electron
transfer” reaction AQ1B-Q1 f AQ2B-Q2. Here again there is a
significant orientation dependence. When the solute is on the
liquid side of the interface, the reorganization free energy of
the parallel orientation is greater than that of the perpendicular
orientation. The behavior is opposite when the solute is on the
vapor side of the interface. Because the transition energy is
∆E1f2 ) ∆Egas+ A2 - A1 + λ, the behavior ofλ as a function

of θ will make the orientation dependence of∆E1f2 similar to,
but somewhat weaker, than that of the solvation free energy.

Given ∆E1f2(Z,θ), one may now calculate with the aid of
eq 17 the absorption spectrum at eachZ and θ and, more
importantly, the orientationally weighted spectrum. This is
shown in part C, where the spectral line shapes (calculated using
eq 18) are given atZ ) -8, -2, 0, 2, 4, and 8 Å. First, the
spectrum in the bulk peaks at the value ofωmax ) 428.4 nm, in
agreement with the experimental value ofωmax ) 429 nm.
(Recall that the radius of the cavity was selected to give this
value.) The width of the line shape (half-width at half-height)
is ∆ω ) 18 nm. The experimental value is about∆ω ) 30
nm. This discrepancy is probably due to other broadening
mechanisms (vibronic, lifetime) which are missing from the
current treatment, as well as to higher order corrections to the
expansion in eq 1 that leads to the Gaussian expression in eq 2.
The current model gives rise to a delta function lineshape in a
vacuum (note the narrow lineshape atZ ) 8 Å), and the
underestimation of the width in the bulk is therefore not
surprising.

As one moves from bulk water to the interface, there is a
slow shift to the blue in the peak position, in agreement with
experiments. Although the shift is monotonic, it significantly
accelerates as the chromophore crosses the interface. This
marked sensitivity to the location of the probe is a direct
consequence of the discontinuous jump in the dielectric proper-
ties of the medium. Because of the rapid change in the peak
position near the interface, it is somewhat difficult to compare
the result with the experimental value. The experimental value15

of ωmax ) 377 nm is reproduced if one takes the position of
the chromophore to beZ ) 1.5 Å, which is slightly into the
vapor phase. Experimentally, the second harmonic signal is
produced by all the molecules in the interface which are
distributed according to their adsorption free energy profile. If
one uses the electrostatic free energy of adsorption from the
model to ascertain the average peak position, the result is near
ωmax ) 390 nm. However, this neglects the hydrophobicity of

Ih(ω,Z) )
∫0

π
e-âA1(Z,θ)I(ω,Z,θ)sin θ dθ

∫0

π
e-âA1(Z,θ)sin θ dθ

(18)

Figure 3. Calculated solvent contribution to ground state free energy
(A), the reorganization free energy (B), and the orientationally averaged
absorption line shape (C) for DEPNA at the water liquid/vapor interface.
The line shape is normalized at each position and the frequency scale
is linear in energy, not wavelength.
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the probe, which when properly taken into account should
increase the weight of those probe locations which give rise to
smaller values (blue shifted) for the peak position. Thus, one
can conclude that, for this case, the continuum model gives
qualitatively reasonable results for the frequency shift of the
electronic absorption spectrum.

B. Absorption Line Shape at the Water/1,2-Dichloro-
ethane Interface. The same parameters used in the previous
section are used here, except that instead of water vapor the
second medium is bulk DCE, for whichεDCE

o ) 2.5, andεDCE
s

) 10. Note that although the static dielectric constant of the
second medium (DCE) is significantly smaller than that of water,
it is much larger than in the previous case. In addition, the
optical dielectric constant is larger than that of water. Both of
these will affect the spectrum in a significant way.

Figure 4 is analogous to Figure 3. It shows the (total) solvent
contribution to the solvation free energy of the ground state
(A), the reorganization free energy (B), and the electronic
spectrum for the same chromophore parameters at the water/
DCE interface. The solvation free energy is entirely determined
by the static dielectric constants of the two liquids, and thus
the general shape and the qualitative behavior are similar to
the plot obtained at the water liquid/vapor interface. In
particular, the orientation dependence is similar: the solute
prefers the parallel orientation when it is in the high dielectric
medium (H2O) and the perpendicular orientation when it is in
the lower dielectric medium (DCE). However, because the Born
solvation free energy is inversely proportional toεs in the bulk
medium, the energy scale in panel A of Figure 4 is much
reduced compared with the one in Figure 3. The electrostatic
free energy of transfer between vacuum and bulk water is-35
kJ/mol compared with-3 kJ/mol from DCE to bulk water.

The changes in the reorganization free energy as the chro-
mophore is moved to the water/DCE interface involve a delicate
balance between the changes in both the static and optical
dielectric constants. The reduction inλ when the solute is
transferred from bulk water to bulk DCE is qualitatively the
same as in the previous system, but it is less dramatic and less
orientation dependent. The combined values ofA2 - A1 andλ
turn out to be very insensitive to the probe location because of

the particular value of the solute charge. Thus, part C shows
that the electronic spectrum exhibits only a very small shift (a
few nm) as the probe is moved across the interface. Experi-
mentally, the peak of the electronic absorption spectrum of
DEPNA shifts fromωmax ) 398 nm in bulk DCE toωmax )
415 nm at the water/DCE interface toωmax ) 429 nm in bulk
water. The small interfacial effect is simply the result of the
overestimation of the spectral shift in DCE. The fundamental
problem is that the cavity size is selected to match the spectrum
in bulk water, and the different solvation structure of DEPNA
in DCE must result in a different sized cavity. Indeed, in typical
applications of continuum models to the calculation of electronic
spectra, the cavity size is taken to be solvent dependent.
Additional support for this view comes from recent molecular
dynamics calculations of the electronic spectrum of DEPNA at
the water/DCE interface,19 which are in good agreement with
experiments. In this molecular model, the cavity size estimated
from the radial distribution functions is indeed larger in DCE.
It is of course possible to modify the continuum model to take
into account the different cavity sizes in each liquid if each
cavity does not cross the interface. However, as will be clear
below, most of the changes in the spectrum relative to the bulk
come from configurations in which at least one of the cavities
is located partially in both media.

Figure 5 summarizes the main results discussed above by
showing the peak position of the spectrum as a function of probe
location along the interface normal. In addition to clearly
summarizing the results discussed above, it also shows the data
for the artificial case where both the water and DCE optical
dielectric constants are taken to be 1. The result of this
calculation (shown as the dashed line) clarifies the importance
of the optical response of the liquids. The entire difference
between this case and the normal water/DCE system is in
making the reorganization free energy larger by a factor of
almost two. In addition to the obvious shift to lower energies
that this makes, the omission of the optical response makes the
DCE phase less polar and results in a more significant variation
of the transition energy and the peak position with the location
of the probe.

C. An Approximate Analytical Model. A simple analytical
expression for the energy gap∆E1f2 can be derived if one
assumes that no cavity can be located partially in one medium.
As a result, for the case of a dumbbell solute (AB) with cavities
of sizesa andb which are separated by a distanceR, there is a
restriction put on the allowed values of the distanceZ between
the center of the AB bond and the interface. Three cases can
be identified: (i)Z < -min(a,b); both cavities are in medium
I. All the values of the angleθ between the interface normal

Figure 4. Same as in Figure 3 for DEPNA at the water/DCE interface.

Figure 5. The peak spectrum as a function of solute position along
the interface normal. Thick solid line: DEPNA at the water liquid/
vapor interface. Dotted line: DEPNA at the normal water/DCE
interface. Dashed line: DEPNA at the water/DCE interface in which
the optical dielectric constant of both media is set to 1. Thin solid line:
approximate result for DEPNA at the water liquid/vapor interface, based
on an analytical expression of the energy gap.
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and the solute bond are allowed ifZ < -max(a,b). (ii) |Z| <
R/2 - max(a,b); one cavity is in medium A and the other in
medium B. In this case the values of the angleθ are restricted
for eachZ. (iii) Z > min(a,b); both cavities are in medium II.

Marcus23 derived a simple analytical expression forA1, A2,
and λ for the second case. Using the same approach, the
expressions forA1, A2, and λ in the other two cases, (i) and
(iii), can be easily determined. The complete result for the
energy gap for all cases is

where

and ηm ) (εI
m - εII

m)/(εI
m + εII

m) with obvious permutations of
“I” and “II” for the other two possibilities (A in “II” and B in
“I” or A and B in “II”). Because the derivation of eq 19 neglects
certain finite-sized effects, there is a small difference between
this expression and the numerical results obtained earlier in the
region where eq 19 applies, but the difference is quite small
(less than 1% for the water/DCE system). However, because
of the strong angular dependence near the interface, the spectral
line shape calculated using eqs 17-20 will differ from the
numerical one for solutes located very near the interface,
especially for a system where the dielectric constant of the two
media is very different. This is shown in Figure 5 for the water
liquid/vapor interface. The thin solid line is the peak spectrum
calculated from the analytical expression (compared with the
thick solid line determined numerically). The thin line is
discontinuous because forR/2 < |Z| < a one or both cavities
crosses the interface and the approximate solution is not valid.
The numerical and analytical results agree well for locations
far from the interface, but there is significant deviation as one
approaches the interface, especially in case ii. Interestingly,
and fortuitously, the approximate analytical result for this case
agrees far better with the experimental value (ωmax ) 377 nm)
than does the exact numerical value.

IV. Conclusions

The continuum electrostatic model for calculating the elec-
tronic absorption line shape at liquid interfaces discussed in this
paper provides a convenient route for estimating interfacial
effects on spectral features. It is in reasonable agreement with
experimental data and molecular dynamics simulations, although
it also highlights the problems inherent in continuum models
of the interface.

The model takes into account the finite size of the solute
cavity and all its possible locations relative to the interface,
treating it as a fixed parameter. The model could be improved
in several ways, including by using different sized cavities for
the solute in different media and by introducing surface
roughness and more complicated cavity shapes. Although it is
expected that all of these will improve the comparison with
experimental results (especially using variable size cavity), these

additions also involve using a larger number of parameters and
therefore represent a substantial increase in the complexity of
the model.
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Appendix

Given here are the formulas for the integrals that appear in
the expression of the solvation free energy and the reorganization
free energy for the system depicted in Figure 2. The electrostatic
potential at any field point in regions I and II is

wherem ) o, s andηm ) (εI
m - εII

m)/(εI
m + εII

m). The distances
ra andra′ are between any field point and the center of sphere
A and its image, respectively, and similarly for sphere B (see
Figure 2). Next one defines

wheredSA ) 2πradz, dSB ) 2πrbdz, with ra andrb being vectors
from the center of each sphere to a point on the surface of that
sphere. Each one of the integrals in eq 22 can be written as a
sum of the expressions given in eq 15 and thus reduced to a
quadrature. Usingq ) Q1 and q ) Q2 for the ground and
excited states of the solute, respectively, one finally obtains
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